Скз расшифровка. «Средства коллективной защиты» Назначение, классификация и характеристика средств коллективной защиты (скз)

Классификация коллективных средств защиты.

Билет №8

1. Какая медицинская документация используется при работе приемно-сортировочного отделения ЛПУ при приеме массового количества пораженных.

2. Классификация коллективных средств защиты.

3. Наложение повязки на голову (шапочка «Гиппократа»)

1.Оформление результатов медицинской сортировки включает использование следующих документов:

— медицинской карточки первичного учета пораженных (форма № 167/у-96) с отрывными сигнальными полосами, к-рые облегчают сортировку на данном и последующем этапах медицинской эвакуации

— сортировочных марок, к-рые обычно прикрепляются к одежде, к ручке носилок с пострадавшим и служат указанием очередности и места назначения пострадавшего. Например, марка красного цвета указывает на необходимость оказания неотложной помощи в операционной, противошоковой палате, синего цвета – в перевязочной и.т.п. Цифры на марке (1,2) свидетельствуют об очередности оказания мед помощи или эвакуации.

В условиях, когда для медицинской эвакуации приходится использовать разнообразные типы транспортных средств, особое значение приобретает эвакуационно-транспортная сортировка с оформлением медицинских документов на эвакуируемых, а именно:

— эвакуационного паспорта, в к-ром отражаются сведения о профиле пострадавших, находящихся в транспорте, об их числе, а также способ транспортировки, время отправления и прибытия транспорта и др

— истории болезни, к-рая заполняется в ЛПУ и вместе с медкартой является важнейшим документом, отражающим результаты медицинской сортировки, оказания помощи и лечения пострадавшего.

Укрытие населения в защитных сооружениях является наиболее надежным способом защиты в ЧС. Коллективными средствами защиты являются инженерные сооружения, предназначенные для защиты населения от поражающих факторов ЧС мирного и военного характера.

К защитным сооружениям относятся:

А) Убежище – защитное сооружение герметического типа, обеспечивающее защиту укрывающихся в нем людей от всех поражающих факторов ЧС мирного и военного характера. Убежище защищает также отвысоких температур при пожарах на поверхности земли и вредных газов.

Б) Противорадиационное укрытие (ПРУ) – защитное сооружение, предназначенное для защиты людей от заражения радиоактивными вещ-вами и от радиоактивного облучения в зонах радиоактивного заражения, а также от непосредственного попадания на кожу и одежду людей капель АХОВ и аэрозолей БС (бактериальных средств).

В) Укрытия простейшего типа –подвалы, погреба, траншеи, землянки. Строительство укрытий простейшего типа позволяет в короткий срок обеспечить защиту людей от поражающих факторов ЧС.

Средства коллективной защиты работников

1234Следующая ⇒

Роль стандартов безопасности труда на производстве

Общие требования и нормы безопасности по видам опасных и вредных производственных факторов устанавливают стандарты без-опасности труда, обеспечивающих нормативную базу управления усло-вами труда.

Система стандартов безопасности труда (ССБТ) — это комплекс вза-емозвьязаних стандартов, направленных на обеспечение безопасности труда, сохранение здоровья и работоспособности человека в процессе труда. Разработка стандартов осуществляется на основе глубоких научных исследований, новых достижений науки и техники учеными, специалистами различных отраслей народного хозяйства, работ-ками служб охраны труда.

Стандарты безопасности труда делятся на межгосударственные (ГОСТ), государственные (ГОСТ), межотраслевые (ГСТУ), отраслевые (ОСТ), стандарты предприятий (СТПССБП). Государственные стандарты-ти охраны труда — это нормы и правила, распространяющиеся на все отрасли хозяйства независимо от форм собственности и вида деятельности: строительные, санитарные нормы и правила, правила ро-смещение электроустановок потребителей, правила дорожного движения и другие.

Стандарты предприятий по безопасности труда является составляющей системы стандартов безопасности труда. На предприятиях общее руководство разработкой стандартов осуществляет руководитель (владелец) или главный инженер, организационно-методическое руководство возложено на службы стандартизации с участием служб охраны труда. Создаются такие стандарты предприятий по безопасности труда:

— Организационно-методические, которые определяют организацию работы по охране труда на предприятии, организацию обучения и др.-структаж работников по безопасности труда, порядок надзора за объектами повышенной опасности, порядок проведения анализа травматизма и т.д.;

— Требования безопасности к производственному оборудованию;

— Требования безопасности к технологическим процессам;

— Требования к обеспечению работников средствами индивидуальной ной защиты (требования к организации обеспечения работников за-собамы индивидуальной защиты и к эксплуатации этих средств, по-рядок выдачи индивидуальных средств защиты и т.д.).

Для обеспечения безопасности труда стандарты предприятий имеют важное значение. Они выполняют следующие функции:

— Есть закон предприятия, что повышает ответственность ке-ривникив и соответствующих служб по охране труда;

— Позволяют упорядочить и систематизировать требования безопас-ности до оборудования, технологических процессов;

— Позволяют сосредоточить внимание не только на выявлении причин травматизма и профзаболеваемости, но и на создании условий для снижения травматизма и профзаболеваемости.

Внедрение стандартов на предприятиях, в учреждениях и организациях заключается в конкретной реализации их требований в обеспечения безопасности труда. Стандарты используются согласно комплексными мерами по достижению установленных нор-матив безопасности, гигиены труда и производственной санитарии, р-ленных на основе обследования оборудования, технологических про-процессов, фактического санитарно-технического и противопожарного состояния рабочих мест.

Дать определение понятий

Безопасность труда — это состояние условий труда, при котором исключено воздействие на работающих опасных и вредных производственных факторов. Безопасность труда определяется требованиями безопасности труда — установленными законодательными актами, нормативно-технической документацией, правилами и инструкциями, выполнение которых обеспечивает безопасность труда работающих.

В целях обеспечения безопасности труда работников создана научно-обоснованная комплексная система различных мероприятий, — охрана труда, которая определяет направления деятельности в области охраны труда.

Безопасные условия труда - это условия труда, при которых воздействие на работающих вредных или опасных производственных факторов исключено либо уровни их воздействия не превышают установленные нормативы.

Безопасность производственного оборудования- свойства производственного оборудования соответствовать требованиям безопасности труда при монтаже (демонтаже) и эксплуатации в условиях, установленных нормативно-технической документацией

БЕЗОПАСНОСТЬ ПРОИЗВОДСТВЕННОГО ПРОЦЕССА - свойство производственного процесса соответствовать требованиям безопасности труда при проведении его в условиях, установленных нормативно-технической документацией. Б. п.

Билет №9. Классификация коллективных средств защиты

п. определяется в первую очередь безопасностью производственного оборудования, которая обеспечивается с учетом требований безопасности при соответствии технического задания на его проектирование, разработке эскизного и рабочего проекта, выпуске и испытаниях опытного образца и передаче его в серийное производство. Автоматизация производства - высшая форма производственных процессов, при которых функции управления и контроля передаются автоматическим устройствам и приборам, что обеспечивает безопасность работ, улучшает условия труда и увеличивает его производительность.

Средства коллективной защиты работников

Средства коллективной защиты работников — технические средства, используемые для предотвращения или уменьшения воздействия на работников вредных и (или) опасных производственных факторов, а также для защиты от загрязнения.

В перечень средств индивидуальной защиты (СИЗ) входят: спецодежда, спецобувь, перчатки, головной убор, респираторы (противогазы), антифоны, защитные очки, дерматологические средства (моющие средства, мази, пасты и др.).

Коллективные средства защиты делятся на: оградительные, предохранительные, тормозные устройства, оградительные устройства, устройства автоматического контроля и сигнализации, дистанционного управления, знаки безопасности.

Блокировочные устройства по принципу действия подразделяют на механические, электронные, электрические, электромагнитные, пневматические, гидравлические, оптические, магнитные и комбинированные. Блокировочные устройства препятствуют проникновению человека в опасную зону либо во время пребывания его в этой зоне устраняют опасный фактор.

Предохранительные устройства используют для автоматического отключения машин и оборудования при отклонении от нормального режима работы или при попадании человека в опасную зону. Эти устройства могут быть блокирующими и ограничительными.

Для обеспечения безопасной и надежной работы оборудования информационные, предупреждающие, аварийные устройства автоматического контроля и сигнализации очень важны. Устройства контроля – это приборы для измерения давлений, температуры, статических и динамических нагрузок, характеризующих работу машин и оборудования. При объединении устройств контроля с системами сигнализации значительно повышается их эффективность. Системы сигнализации бывают: звуковыми, световыми, цветовыми, знаковыми, комбинированными.

Для защиты от поражения электрическим током применяются различные технические меры. Это – малые напряжения; электрическое разделение сети; контроль и профилактика повреждения изоляции; защита от случайного прикосновения к токоведущим частям; защитное заземление; защитное отключение; индивидуальные средства защиты.

1234Следующая ⇒

Станция катодной защиты (СКЗ) – это комплекс сооружений, предназначенных для катодной поляризации газопровода внешним током.

Основными конструктивными элементами СКЗ (рис. 12.4.1.) являются:

Ø источник постоянного (выпрямленного) тока (катодная станция) 5 ;

Ø анодное заземление 2 , зарываемое в землю на некотором расстоянии от трубопровода 1 ;

Ø соединительные электролинии 3 , соединяющие положительный полюс источника тока с анодным заземлением, а отрицательный полюс - с трубопроводом;

Ø катодный вывод газопровода 8 и точка дренажа 7 ;

Ø защитное заземление 4 .

Рисунок – 12.4.1. - Принципиально-конструктивная схема СКЗ

Потенциал трубопровода под действием входящего тока становится более электроотрицательным, оголенные участки газопровода (в местах повреждения изоляции) катодно заполяризовываются и в зависимости от величины установившегося потенциала становится полностью или частично защищенными от коррозии. Одновременно на анодном заземлении под действием стекающего тока происходит процесс анодной поляризации, сопровождающийся постепенным разрушением анодного заземления.

Источники постоянного тока СКЗ разделяются на две группы. К первой группе относятся сетевые преобразующие устройства - выпрямители, питаемые от линий электропередачи (ЛЭП) переменного тока промышленной частоты 50 Гц номинальным напряжением от 0,23 до 10 кВ. Ко второй группе относятся автономные источники – генераторы постоянного тока и электрохимические элементы, которые вырабатывают электроэнергию непосредственно на трассе газопровода вблизи места, где необходимо установить СКЗ (ветроэлектрогенераторы, электрогенераторы с приводом от газовых турбинок, от двигателя внутреннего сгорания, термоэлектрогенераторы, аккумуляторы).

На магистральных газопроводах широкое распространение получили сетевые катодные станции с выпрямителями однофазного переменного тока напряжением 127/220 В, частотой 50 Гц. При наличии линий электропередачи переменного тока с номинальным напряжением 0,23; 0,4; 6 и 10 кВ применение таких станций целесообразно и экономически оправдано. При питании от ЛЭП 6 или 10 кВ выпрямительную установку подключают к питающей линии через понижающий трансформатор.

Рисунок – 12.4.2. – Упрощенная принципиальная схема типового неавтоматического источника питания СКЗ

На рис.12.4.2. приведена упрощенная типовая схема сетевой катодной станции с выпрямителем. Сеть переменного тока подключается к клеммам 1 и 2 . Учет потребляемой электроэнергии осуществляется электросчетчиком 3 . Автомат 4 служит для включения установки, а предохранители 5 обеспечивают защиту от токов короткого замыкания и перегрузок со стороны переменного тока. Понижающий трансформатор 6 питает выпрямитель 7 , собранный из отдельных выпрямительных элементов по двухполупериодной мостовой схеме выпрямления или по двухполупериодной однофазной схеме выпрямления с нулевым выводом. Защита от короткого замыкания и перегрузки со стороны цепи выпрямленного тока обеспечивается предохранителем 9 . Режим работы установки контролируют при помощи амперметра 10 и вольтметра 12 . Соединительный кабель от трубопровода 11 подключается к клемме «-», а от анодного заземления - к клемме «+». Все элементы установки смонтированы в металлическом шкафу, запираемом на замок.

Для обеспечения безопасных условий эксплуатации все металлические части конструкции станции заземляются защитным заземлением 8 .

Выпрямительные установки имеют устройства для регулирования напряжения или силы тока. В большинстве установок применяют ступенчатое регулирование напряжения путем переключения отдельных секций обмоток трансформатора. На некоторых типах выпрямителей напряжение регулируется плавно при помощи автотрансформатора или магнитных шунтов в обмотках трансформатора. Применяют также симисторное регулирование напряжения в первичной обмотке и тиристорное – во вторичной.

При катодной защите газопроводов, находящихся в зоне действия блуждающих токов, режим работы неавтоматических выпрямителей переменного тока обычно выбирается с учетом среднего значения разности потенциала «труба – земля», которое определяется по данным измерений за определенный промежуток времени (обычно среднесуточное значение) и не исключает выбросов потенциала в анодную или катодную область. Для подавления анодных выбросов выпрямитель необходимо настраивать на режим перезащиты. Глубокая катодная поляризация приводит к перерасходу электроэнергии, отслаиванию и растрескиванию изоляционного покрытия, наводораживанию поверхности металла (за счет интенсивного выделения на катоде водорода). Такой характер изменения потенциалов газопроводов приводит к необходимости создания автоматических станций катодной защиты, которые должны поддерживать потенциал в защитном диапазоне при минимальном расходе электроэнергии и максимальном использовании защитных свойств блуждающих токов. СКЗ состоят из устройств для установки заданного значения разности потенциалов (задающих устройств), устройств для измерения фактической разности потенциалов (измерительных устройств со стационарными электродами сравнения), усилителей мощности, исполнительных органов, изменяющих силу тока в цепи СКЗ.

Что такое СКЗ (и с чем его едят) ?

Самый простой способ определить состояние агрегата - это измерить простейшим виброметром СКЗ вибрации и сравнить его с нормами. Нормы вибрации определены рядом стандартов, либо указываются в документации на агрегат и хорошо известны механикам.

А что же такое СКЗ? СКЗ - среднеквадратичное значение какого-либо параметра. Нормы обычно приводятся для виброскорости, и поэтому чаще всего звучит сочетание СКЗ виброскорости (иногда говорят просто СКЗ). В стандартах определен метод измерения СКЗ - в частотном диапазоне от 10 до 1000 Гц и ряд значений СКЗ виброскорости: ... 4.5, 7.1, 11.2, ... - они отличаются примерно в 1.6 раза. Для разных по типу и мощности агрегатов задаются значения норм из этого ряда.

Математика СКЗ

Мы имеем снятый временной сигнал виброскорости длиной 512 отсчетов (x0 ... x511). Тогда СКЗ вычисляется по формуле:

Еще проще вычисляется СКЗ по амплитуде спектра:

В формуле СКЗ по спектру индекс j перебирается не с 0, а с 2, так как СКЗ вычисляется в диапазоне от 10 Гц. При вычислении СКЗ по временному сигналу мы вынуждены применять какие-либо фильтры для выделения нужного частотного диапазона.

Рассмотрим пример. Сгенерируем сигнал из двух гармоник и шума.

Значение СКЗ по временному сигналу несколько больше, чем по спектру, так как в нем есть частоты менее 10 Гц, а в спектре мы их выбросили. Если в примере убрать последнее слагаемое rnd(4)-2, добавляющее шум, то значения точно совпадут. Если увеличить шум, например rnd(10)-5, то расхождение будет еще больше.


Другие интересные свойства: значение СКЗ не зависит от частоты гармоники, конечно, если она попадает в диапазон 10-1000 Гц (попробуйте поменять числа 10 и 17) и от фазы (поменяйте (i+7) на что-нибудь другое). Зависит только от амплитуды (числа 5 и 3 перед синусами).

Для сигнала из одной гармоники:

Вычислить СКЗ виброперемещения или виброускорения из СКЗ виброскорости можно только в простейших случаях. Например, когда мы имеем сигнал из одной оборотной гармоники (либо она намного больше остальных) и знаем ее частоту F. Тогда:

Например, для оборотной частоты 50 Гц:

СКЗуск=3.5 м/с2

СКЗскор=11.2 мм/с

Дополнения от Антона Азовцева [ВАСТ ]:

Под общим уровнем обычно понимается среднеквадратичное или максимальное значение вибрации в определенной полосе частот.

Наиболее типичным и распространенным является значение виброскорости в полосе 10-1000Гц. А вообще на эту тему есть множество ГОСТов:
ИСО10816-1-97 - Контроль состояния машин по результатам измерений вибрации на
невращающихся частях. Общие требования.
ИСО10816-3-98 - Контроль состояния машин по результатам измерений вибрации на
невращающихся частях. Промышленные машины номинальной мощностью свыше 15 кВт и
номинальной скоростью от 120 до 15000 об/мин.
ИСО10816-4-98 - Контроль состояния машин по результатам измерений вибрации на
невращающихся частях. Газотурбинные установки за исключением установок на основе
авиационных турбин.
ГОСТ 25364-97 - Агрегаты паротурбинные стационарные. Нормы вибрации опор
валопроводов и общие требования к проведению измерений.
ГОСТ 30576-98 - Насосы центробежные питательные тепловых электростанций. Нормы
вибрации и общие требования к проведению измерений.

По большинству ГОСТов требуется измерять среднеквадратичные значения виброскорости.

То есть надо взять датчик виброскорости, оцифровать сигнал на протяжении некоторого времени, отфильтровать сигнал с тем, чтобы удалить компоненты сигнала вне полосы, взять сумму квадратов всех значений, извлечь из нее квадратный корень, поделить на число сложенных значений и все - вот он общий уровень!

Если сделать тоже, но вместо среднеквадратичного взять просто максимум, то получится "Пиковое значение" А если взять разность между максимальным и минимальным, то получится так называемый "Двойной размах" или "пик-пик". Для колебаний простой формы среднеквадратичное значение в 1.41 раза меньше пикового и в 2.82 раза мешьже пик-пикового.

Это цифровой, есть и аналоговые детекторы, интеграторы, фильтры и т.п.

Если Вы пользуете датчик ускорения, то предварительно надо еще проинтегрировать сигнал.

Суть заключается в том, что надо просто сложить значения всех составляющих спектра в интересующей полосе частот (ну естественно не сами значения, а взять корень из суммы квадратов). Так работал наш (ВАСТовский) прибор СД-12 - он именно вычислял СКЗ общие уровни по спектрам, теперь же СД-12М вычисляет реальные значения общих уровней, применяя фильтрацию и т.п. числовую обработку в области временных сигналов, поэтому при измерении общего уровня он одновременно выччисляет СКЗ, пик, пик-пик и пик фактор, что позволяет проводить правильный мониторинг...

Есть еще пара замечаний - спектры, естественно, должны быть в линейных единицах и тех, в которых надо получить общий уровень (не логарифмический, то есть не в дБ, а в ммс). Если спектры в ускорении (G или мсс), то их надо проинтегрировать - поделить каждое значение на 2*пи*частоту, соответствующую этому значению. И еще есть некая сложность - спектры обычно вычисляются с применением некого весового окна, например Ханнинга, эти окна тоже вносят сои поправки, что существенно затрудняет дело - надо знать какое окно и его свойства - проще всего посмотреть в справочнике по цифровой обработке сигналов.

Для примера - если мы имеем спектр виброускорения, полученный с окном ханнинга, то чтобы получить СКЗ виброускорения, то надо все каналы спектра поделить на 2пи*частоту канала, потом посчитать сумму квадратов значений в правильной полосе частот, потом умножить на две трети (вклад окна ханнинга), потом извлечь корень из полученного.

А есть еще интерессные вещи

Есть всякие пик и крест факторы, которые получаются, если поделить максимальное на среднеквадратичное значение общих уровней вибрации. Если значение этих пик факторов большое, значит в механизме имеются сильные одиночные удары, то есть состояние оборудования плохое, на этом основаны, например приборы типа СПМ. Этот же принцип, но в статистической интерпретации пользует Диамех в виде Эксцесса - это горбы в дифференциальном распределении (во как хитро зовется!) значений временного сигнала по отношении с обычному "нормальному" распределению.

Но проблема с этими факторами заключается в том, что эти факторы сначала растут (с ухудшением состояния оборудование, появлением дефектов), а потом начинают падать, когда состояние еще больше ухудшается, вот тут и проблема - надо понять толи пикфактор с экцессом еще растет, толи уже падает...

В общем и целом надо следить за ними. Правило грубое, но более-менее разумное выглядит так - когда пикфактор начал падать, а общий уровень начал резко расти, то все плохо, надо чинить оборудование!

А есть еще много всего интересного!

Одновременно с проведением летных испытаний сверхмалого истребителя СК-1 и доводкой СК-2, ОКБ ЦАГИ, которым руководил Матус Рувимович Бисноват, вело работы и по проекту двухмоторного тяжелого истребителя СК-З, оснащенного двигателями АМ- 37.

Этот самолет должен был применяться для сопровождения бомбардировщиков, и транспортных самолетов, выполняющих ответственные задания на большой высоте, а также для уничтожения высотных целей.

После доработки фюзеляжа под бомбовый отсек (что было предусмотрено проектом, и в этом было главное отличие от немецкого опытного истребителя Фокке-Вульф 187) СК-З мог применяться как высотный скорострой бомбардировщик, способный нести бомбы массой до 1000 кг.

Работы по проекту шли довольно быстро и первую машину планировали передать на заводские испытания уже осенью 1940 года.

Как и многие аналогичные проекты отечественных конструкторов,СК-З был расчитан на установку новейших высотных моторов АМ-37 взлетной мощностью по 1400-1450 лс и номинальной мощностью на высоте 5000 м – 1250 лс.

Проект сразу же разрабатывался в двух вариантах: одноместном (основном) и двухместном. Двухместный вариант предусматривал замену закабинного бензобака на рабочее место радиста, который сидел спиной к пилоту.

Для увеличения дальности полета под центропланом крыла самолета предусматривалась подвеска двух дополнительных топливных баков емкостью по 200 л. На этих же узлах подвески можно было установить и бомбодержатели для 250-кг авиабомб. Еще одна бомба могла быть подвешена под фюзеляжем.

Наступательное стрелковое вооружение самолета должно было состоять из четырех крупнокалиберных пулеметов Березина, два из которых размещались в носовой части фюзеляжа, а два – под кабиной пилота. В перспективе пулеметы могли быть заменены на 20-мм пушки ШВАК.

Конструкция самолета должна была быть цельнометаллической. Вес пустого самолета не должен был превышать 5200 кг, а взлетный – 7000 кг.

В январе 1940 года началась постройка полноразмерного макета самолета СК-З и весной того же года эскизный проект истребителя был рассмотрен комиссией НКАП под председательством Я.В.Смушкевича, в которую также входили А.С. Яковлев, С.Н.Шишкин и М.Н.Шульженко.

В связи с тем, что в это время Яковлев продвигал в серию собственный самолет аналогичного назначения (И-29, ББ-22), истребителю СК-З по-видимо- му просто не хватило места в длинном строю "двухмоторников". Во всяком случае проект был возвращен на доработку.

В феврале 1941 года переделанный заново проект, теперь уже только в двухместном варианте, после повторного рассмотрения был окончательно "зарезан". К тому же на подходе были похожие самолеты куда более авторитетных конструкторов – ДИС Микояна и Гуревича и ТИС Поликарпова.

Вскоре М.Р.Бисноват был направлен в Ленинград на завод №23, где ему пришлось заниматься серийным выпуском истребителя ЛаГГ-3. Во второй половине 1943 г. Бисновата перевели в НИИ-3, где он проектирует и строит самолеты по тематике "302". После войны он возвращается в ЦАГИ, где построил несколько экземпляров самолета с ЖРД Би-5 (Б-5) со стреловидным крылом. Начиная с 1956 года, главный конструктор М.Р.Бисноват возглавил новую тематику по ракетам класса воздух-воз- дух и воздух-земля, работая на ТМЗ.


Основные летно-технические характеристики СК-З*

Самолет СК-З СК-И

Год выпуска 1940 1940

Экипаж, чел. 1 2

Силовая установка 2хАМ-37 2хАМ-37

Мощность взлетная, л.с. 1400 1450**

номинальная на Н=5000 м, л.с. 1250 1250

Скорость максимальная у земли, км/ч 555 535

максимальная на высоте, км/ч 700 680

Время набора высоты 5000 м, мин. 18,5 19,2

Потолок практический, м 11000 11000

Дальность полета, км 1500 900

Площадь крыла, м2 23,79 24,54

Взлетный вес, кг 6995 7180

Вес пустого самолета, кг 5102 5200

Запас топлива, кг 1600 1100***

* данные расчетные

** форсированая по наддуву

*** без подвесных баков

Одним из часто применяемых методов электрохимической защиты разнообразных конструкций из металлов от ржавления является катодная защита. В большинстве случаев ее используют совместно с нанесением на металлические поверхности специальных покрытий.

1 Общая информация о катодной защите

Впервые такая защита металлов была описана в 1820-х годах Гемфри Дэви. На основании его докладов в 1824 году на корабле HMS Samarang осуществили проверку предоставленной теории. На медную обшивку корабля установили железные анодные протекторы, которые существенно уменьшили скорость ржавления меди. Методику стали развивать, и в наши дни катодная всевозможных конструкций из металлов (трубопроводов, элементов автомобиля и т. д.) признается наиболее эффективной и широко используемой.

В производственных условиях такая защита металлов (ее нередко называют катодной поляризацией) производится по двум основным методикам.

  1. Предохраняемая от разрушения конструкция подключается к внешнему источнику тока. В данном случае металлоизделие выполняет функцию катода. А анодами являются инертные дополнительные электроды. Эта методика обычно применяется для защиты трубопроводов, металлических сварных оснований, платформ для бурения.
  2. Катодная поляризация гальванического типа. При такой схеме металлическая конструкция контактирует с металлом, который имеет больший электроотрицательный потенциал (алюминий, магний, алюминиевые сплавы, цинк). При этом под анодом понимают оба металла (основной и защитный). Растворение (имеется в виду сугубо электрохимический процесс) электроотрицательного материала приводит к протеканию через предохраняемое изделие необходимого катодного тока. С течением времени происходит полное разрушение металла-"защитника". Гальваническая поляризация эффективна для конструкций, на которых есть изоляционный слой, а также для металлоизделий относительно малых размеров.

Первая методика нашла широкое применение по всему миру. Она достаточно проста и экономически целесообразна, дает возможность предохранять металл от общей коррозии и от многих ее разновидностей – межкристаллитной коррозии "нержавейки", питтинговой, растрескивания латунных изделий, обусловленного напряжениями, при которых они работают.

Гальваническая схема нашла большее применение в США. В нашей стране она используется реже, хотя ее эффективность высока. Ограниченное применение протекторной защиты металлов в России связано с тем, что на многие трубопроводы у нас не наносят специальное покрытие, а это является обязательным условием для реализации антикоррозионной гальванической методики.

2 Как работает стандартная катодная поляризация металлов?

Катодная защита от коррозии производится посредством использования наложенного тока. Он поступает на конструкцию от выпрямителя либо иного источника (внешнего) тока, где промышленный по частоте переменный ток модифицируется в требуемый постоянный. Объект, который защищается, подключают к выпрямленному току (к "минусовому" полюсу). Конструкция, таким образом, является катодом. Анодное заземление (второй электрод) подключают к "плюсу".

Важно, чтобы между вторичным электродом и конструкцией имелся хороший электролитический и электронный контакт. Первый обеспечивается грунтом, куда погружают анод и объект защиты. Грунт в данном случае выполняет роль электролитической среды. А электронного контакта добиваются с помощью проводников из металлических материалов.

Регулирование катодной антикоррозионной защиты осуществляется посредством поддержания защитного потенциала между электролитической средой и индикатором потенциала поляризации (либо непосредственно конструкцией) на строго определенной величине. Замеряют показатель вольтметром с высокоомной шкалой.

Здесь необходимо понимать, что у потенциала есть не только поляризационный компонент, но и еще одна составляющая – падение (омическое) напряжения. Такое падение возникает из-за протекания через эффективное сопротивление катодного тока. Причем качество катодной защиты зависит исключительно от поляризации на поверхности изделия, которое предохраняется от ржавления. По этой причине выделяют две характеристики защищенности металлоконструкции – наибольший и наименьший потенциалы поляризации.

Эффективное регулирование поляризации металлов, учитывая все сказанное, становится возможным в том случае, когда показатель омического компонента исключается из величины полученной разности потенциалов. Добиться этого можно при помощи особой схемы замера потенциала поляризации. Описывать ее в рамках данной статьи мы не будем, так как она изобилует множеством специализированных терминов и понятий.

Как правило, катодная технология применяется совместно с нанесением на внешнюю поверхность предохраняемых от коррозии изделий специальных защитных материалов.

Для защиты неизолированных трубопроводов и других конструкций необходимо использовать существенные токи, что экономически невыгодно и технически сложно.

3 Катодная защита элементов автомобиля

Коррозия – активный и весьма агрессивный процесс. Качественная защита узлов автомобиля от ржавления вызывает немало проблем у автолюбителей. Коррозионному разрушению подвергаются все без исключения транспортные средства, ведь ржавление начинается даже тогда, когда на лакокрасочном покрытии машины появляется маленькая царапина.

Катодная технология предохранения автомобиля от коррозии достаточно распространена в наши дни. Ее применяют наряду с использованием и всевозможных мастик. Под такой методикой понимают подачу электрического потенциала на поверхность той или иной детали автомобиля, что приводит к эффективному и длительному замедлению ржавления.

При описываемой защите транспортного средства катодом являются специальные пластинки, которые накладывают на наиболее уязвимые его узлы. А роль анода играет корпус автомобиля. Подобное распределение потенциалов обеспечивает целостность корпуса машины, так как разрушению подвергаются только катодные пластины, а основной металл не корродирует.

Под уязвимыми местами транспортного средства, которые можно защитить по катодной методике, понимают:

  • заднюю и переднюю части днища;
  • арку заднего колеса;
  • области фиксации подфарников и непосредственно фар;
  • стыки крыла с колесом;
  • внутренние зоны дверей и порогов;
  • пространство за щитками колес (передних).

Для защиты автомобиля необходимо приобрести специальный электронный модуль (некоторые умельцы изготавливают его самостоятельно) и протекторы-пластины. Модуль монтируют в салоне машины, подсоединяют к бортовой сети (он должен быть запитанным при отключении автодвигателя). Установка устройства занимает буквально 10–15 минут. Причем энергии оно берет минимум, а антикоррозионную защиту гарантирует весьма качественную.

Защитные пластины могут иметь разный размер. Их число также отличается в зависимости от того, в каких местах автомобиля они монтируются, а также от того, какие геометрические параметры имеет электрод. На практике пластин нужно тем меньше, чем больший размер имеет электрод.

Защита от коррозии автомобиля по катодной методике производится и иными сравнительно простыми способами. Самый элементарный – подсоединить проводом "плюс" аккумулятора автомобиля к обычному металлическому гаражу. Обратите внимание – для подключения необходимо обязательно использовать резистор.

4 Защита трубопроводов методом катодной поляризации

Разгерметизация различных по назначению трубопроводов происходит во многих случаях из-за их коррозионного разрушения, вызываемого появлением разрывов, трещин и каверн. Особенно подвержены ржавлению подземные коммуникации. На них образуются зоны с разным потенциалом (электродным), что обуславливается гетерогенностью грунта и неоднородным составом металлов, из которых изготавливаются трубы. За счет появления указанных зон начинается процесс активного формирования коррозионных гальванических компонентов.

Катодная поляризация трубопроводов, выполняемая по схемам, описанным в начале статьи (гальваника или внешний источник энергии), базируется на уменьшении скорости растворения материала труб в процессе их эксплуатации. Достигается подобное уменьшение посредством смещения коррозионного потенциала в зону, имеющую по отношению к естественному потенциалу более отрицательные показатели.

Еще в первой трети 20 столетия был определен потенциал катодной поляризации металлов. Его показатель равняется –0,85 вольт. В большинстве грунтов естественный потенциал металлических конструкций находится в диапазоне от –0,55 до –0,6 вольт.

Это означает, что для эффективной защиты трубопроводов требуется "передвинуть" коррозионный потенциал в отрицательную сторону на 0,25-0,3 вольт. При такой его величине практическое влияние ржавления на состояние коммуникаций почти полностью нивелируется (коррозия за год имеет скорость не более 10 микрометров).

Методика с применением источника тока (внешнего) считается трудоемкой и достаточно сложной. Зато она обеспечивает высокий уровень защиты трубопроводов, ее энергетический ресурс ничем не ограничивается, при этом сопротивление (удельное) грунта оказывает минимальное влияние на качество защитных мероприятий.

Источниками питания для катодной поляризации обычно являются воздушные электролинии на 0,4; 6 и 10 кВ. На местностях, где таковых нет, допускается использование газо-, термо и дизель-генераторов в качестве источников энергии.

Ток-"защитник" распределяется неравномерно по протяженности трубопроводов. Наибольшая его величина отмечается в так называемой точке дренажа – в месте, где производится подключение источника. Чем больше расстояние от этой точки, тем меньше защищены трубы. При этом и чрезмерный ток непосредственно в зоне подключения оказывает негативное влияние на трубопровод – высока вероятность водородного растрескивания металлов.

Метод с использованием гальванических анодов демонстрирует неплохую эффективность в грунтах с малым показателем омности (до 50 ом*м). В грунтах высокоомной группы его не применяют, так как особых результатов он не дает. Здесь стоит добавить, что аноды изготавливают из сплавов на основе, алюминия, магния и цинка.

5 Коротко о станциях катодной защиты (СКЗ)

Для антикоррозионной защиты трубопроводов, проложенных под землей, вдоль трассы их залегания устанавливают СКЗ, включающие в себя:

  • анодное заземление;
  • источник тока;
  • пункт контроля и измерения;
  • кабели и провода, выполняющие соединительные функции.

Станции подключают к сетям электрического тока либо к автономным устройствам. Разрешается устанавливать на СКЗ несколько заземлений и источников энергии тогда, когда в одном подземном коридоре проложено две и более ниток трубопровода. Это, правда, влечет за собой увеличение расходов на проведение антикоррозионных мероприятий.

Если монтируется всего одна установка на многониточные коммуникации, ее соединение с трубами осуществляется посредством особых блоков. Они не позволяют формироваться сильным гальваническим парам, возникающим при монтаже глухих перемычек на трубные изделия. Указанные блоки изолируют трубы друг от друга, а также дают возможность выбирать на каждом элементе трубопроводов требуемый потенциал, гарантирующий максимальную защиту конструкции от ржавления.

Выходное напряжение на катодных станциях может регулироваться автоматически (установка в этом случае оснащается тиристорами) или вручную (оператор переключает при необходимости трансформаторные обмотки). В ситуациях, когда СКЗ функционируют в изменяющихся во времени условиях, рекомендуется эксплуатировать станции с автоматической регулировкой напряжения.

Они сами следят за показателями сопротивления (удельного) грунта, появлением блуждающих токов и прочих факторов, оказывающих негативное воздействие на качество защиты, и автоматически корректируют работу СКЗ. А вот в системах, где защитный ток и показатель сопротивления в его цепи остаются неизменными, лучше использовать установки с ручной настройкой напряжения на выходе.

Добавим, что регулирование в автоматическом режиме производится по одному из двух показателей:

  • по току защиты (гальваностатические преобразователи);
  • по потенциалу объекта, который защищается (потенциостатические преобразователи).

6 Информация об известных станциях катодной защиты

Среди популярных отечественных СКЗ можно выделить несколько установок. Очень востребованной является станция Минерва–3000 – мощная система, разработанная французскими и российскими инженерами для объектов Газпрома. Достаточно одной Минервы, чтобы надежно защитить от ржавления до 30 километров трубопроводов. Станция обладает такими основными достоинствами:

  • уникальная технологичность выпуска всех ее комплектующих;
  • повышенная мощность СКЗ (можно предохранять коммуникации с очень плохим защитным покрытием);
  • самовосстановление (после аварийных перегрузок) режимов работы станции на протяжении 15 секунд;
  • наличие высокоточного цифрового оборудования для контроля рабочих режимов и системы терморегулирования;
  • наличие защитных схем от перенапряжения измерительных и входных цепей;
  • отсутствие подвижных узлов и герметичность электрошкафа.

Кроме того, к Минерва–3000 можно подключать установки для удаленного контроля над работой станции и дистанционного управления ее оборудованием.

Отличными техническими показателями обладают и системы АСКГ-ТМ – современные телемеханизированные адаптивные станции для защиты электрокабелей, городских и магистральных трубопроводов, а также емкостей, в которых хранят газ и нефтепродукты. Такие устройства выпускаются с разными показателями (от 1 до 5 киловатт) выходной мощности. Они располагают многофункциональным телеметрическим комплексом, позволяющим выбирать конкретный рабочий режим СКЗ, мониторить и изменять параметры станции, а также обрабатывать поступающую информацию и отправлять ее оператору.

Преимущества использования АСКГ-ТМ :

  • возможность встраивания в SCADA-комплексы за счет поддержки ОРС-технологии;
  • резервный и главный канал связи;
  • выбор значения мощности (выходной);
  • повышенная отказоустойчивость;
  • большой интервал рабочих температур;
  • уникальная точность настройки выходных параметров;
  • предохранение от напряжения силовых выходов системы.

Имеются СКЗ и других типов, сведения о которых несложно найти на специализированных сайтах в интернете.

7 Какие объекты можно защищать при помощи катодной поляризации?

Кроме защиты автомобилей и трубопроводов рассматриваемые методики поляризации активно используются для предохранения от коррозии арматуры, входящей в железобетонные конструкции (здания, дорожные объекты, фундаменты и так далее). Обычно арматура представляет собой единую электросистему, которая при попадании в нее хлоридов и воды активно корродирует.

Катодная поляризация в сочетании с операцией санации бетона останавливает коррозионные процессы. В данном случае необходимо применять два типа анодов:

  • основные – из титана, графита или их комбинации с покрытием металлооксидного вида, а также кремнистого чугуна;
  • распределительные – стержни из сплавов титана с добавочным слоем металлической защиты либо с неметаллическим электропроводящим покрытием.

Регулируя внешний ток, поступающий на железобетонную конструкцию, осуществляют выбор потенциала арматуры.

Поляризация считается незаменимой методикой для защиты стационарных строений, размещаемых на континентальном шельфе, в газовой и нефтяной промысловых сферах. Первоначальные защитные покрытия на таких объектах невозможно восстановить (требуется их демонтаж и транспортировка в сухие ангары), а значит, остается один выход – катодная защита металлов.

Для предохранения от морской коррозии применяется гальваническая поляризация гражданских кораблей посредством анодов из цинка, магния, алюминиевых сплавов. На берегу (во время ремонтов и стоянок) судна подключают к СКЗ, аноды для которых делают из платинированного титана.

Также катодная защита используется для предохранения от разрушения внутренних частей сосудов и емкостей, а также труб, которые контактируют со сточными промышленными водами и иными агрессивными электролитами. Поляризация в данном случае увеличивает время безремонтного применения указанных конструкций в 2–3 раза.